Contributions of Urban, Biomass Burning and Secondary Organic Aerosols at the T1 Site during MILAGRO 2006

Rahul A. Zaveri, Chen Song, M. Lizabeth Alexander, YuLong Xie, Xiao-Ying Yu Pacific Northwest National Laboratory

Joost de Gouw, Daniel Welsh-bon, Carsten Warneke National Oceanic and Atmospheric Administration

Manjula Canagaratna, Timothy B. Onasch, John T. Jayne, Douglas R. Worsnop Aerodyne Research, Inc.

Greg Huey Georgia Tech

Motivation

- Organic aerosols (OA) observed were of three major types:
 - POA from urban sources
 - **BBOA** from fires (e.g., grass, trees, trash)
 - SOA from urban, biogenic, and biomass burning precursor VOCs
- Contributions of the different types of OA are needed to estimate radiative forcing by each type
- Breakdown by each type is also needed to carry out meaningful model analyses of POA, BBOA, and SOA evolution

Analysis Approaches

- Positive Matrix Factorization (PMF)
 - Uses m/z OA mass spectrum time series
 - Needs error statistics for each m/z
- Multiple Linear Regression (MLR)
 - Uses independently measured tracers
 - Needs background concentrations

T1 Site Data

Acetylene → Urban POA tracer
Acetonitrile → BBOA tracer

Poor correlation between the tracers is needed for MLR to work

Multiple Linear Regression (MLR) for OA

$$[OA] = \ddot{A}[BBOA] + \ddot{A}[POA] + \ddot{A}[SOA] + [OA]_{bkg}$$

Multiple Linear Regression (MLR) for CO

CO has only two major primary sources: Biomass Burning and Urban

$$[CO] = \Delta[CO]_{BB} + \Delta[CO]_{urban} + [CO]_{bkg}$$

Background Concentrations & MLR Results

$$[CH_3CN]_{bkq} = 0.2 ppbv$$

$$[C_2H_2]_{bkq} = 0.3 \text{ ppbv}$$

$$[OA]_{bkg}$$
 = 5.96 µg m⁻³

$$[CO]_{bkq}$$
 = 197.5 ppbv

$$x_{OA} = \Delta[BBOA]/\Delta[CH_3CN] = 9.4 \pm 1.5$$
 µg m⁻³ ppbv⁻¹

$$y_{OA} = \Delta [POA]/\Delta [C_2H_2] = 0.43 \pm 0.06 \mu g m^{-3} ppbv^{-1}$$

$$x_{CO} = \Delta[CO]_{BB}/\Delta[CH_3CN] = 427 \pm 21 \text{ ppbv/ppbv}$$

$$y_{CO} = \Delta[CO]_{Urb}/\Delta[C_2H_2] = 144 \pm 2 \text{ ppbv/ppbv}$$

Estimated POA, BBOA, and SOA by MLR

PMF vs MLR

Emission Ratios: Estimated vs Inventory

Emission Ratios in g/kg

Emission Ratio	MLR (this work)	Measurement	WRF-chem Inventory
<u>Δ[BBOA]</u> Δ[CO]	18±4	80-220 (Pine fires: Yokelson et al., 2007) ~17 (Grass fires: Sinha et al., 2004)	~70
<u>Δ[POA]</u> Δ[CO]	2.4±0.4	~3.3 (Kirchstetter et al., 1999 de Gouw et al., 2005)	3.8

BBOA/CO ratio at T1 is consistent with grass fires as opposed to pine forest fires. The ¹³C/¹²C analysis of Marley et al. (2008) also confirms that T1 was impacted by local grass fires (i.e., C-4 plants).

BBOA/CO ratio in WRF-Chem inventory is consistent with pine forest fire data of Yokelson et al. (2007).